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Starting from the Kubo expression for thermal conductivity a calculation of the lattice thermal conductivity 
of an isotopically disordered cubic Bravais crystal is carried out to lowest order in the concentration of the 
minority constituent (the impurities). It is shown that to this order in the concentration the expression for 
the conductivity has the form predicted by simple kinetic theory arguments, in the case that the impurity atoms 
are heavier than the atoms of the host crystal. The reciprocal of the phonon lifetime in this case has a resonance 
character of the type discussed recently by Brout and Visscher. 

1. Introduction 

In 1914, in the published proceedings of the Wolfskehl 
Conferences of the preceding year, Debye2 suggested 
that anharmonic terms in the expansion of the potential 
energy of a crystal in powers of the displacements of 
the atoms from their equilibrium positions would lead to 
the exchange of energy between the normal modes of the 
harmonic approximation, and therefore provided a 
mechanism which could explain the thermal resistance 
of insulators. Fifteen years later Peierls3 derived a 
quantum mechanical transport equation for the phonon 
distribution function for a crystal possessing cubic an-
harmonicities, from the solution of which the lattice 
thermal conductivity could be calculated. The next 
major contribution to the theory of lattice thermal 
conductivity is to be found in the work of Klemens4 

who first emphasized the importance of the scattering of 
phonons by crystalline defects as a mechanism giving 
rise to thermal resistance. In the succeeding years the 
theory of thermal resistance due to point defects has 
been discussed by a number of authors.5 All of these 
authors have based their treatments on the Peierls 
transport equation.3 

In 1957 a new approach to the calculation of trans­
port coefficients was presented by Kubo and his co-

(1) Th is research was suppor ted by the Advanced Research Projects 
Agency, Director for Mater ia l s Sciences, and technical ly moni tored by the 
Air Force Office of Scientific Research under Con t rac t AF 49(638)-1245. 

(2) P, Debye in "Vor t rage uber die Kinet ische Theorie der M a t e r i e , " 
B, G, Teubne r , Leipzig and Berlin, 1914. 

(3) R K. Peierls, Ann. Physik, 3, 1055 (1929). 
(4) P, G Klemens , Proc. Roy. Soc. (London) , A208, 108 (1951); Proc. 

Phys Soc. (London) , A68, 1113 (1958). 
(5) R Berman, P. T. Net t ley , F. W. Sheard, A. N. Spencer, R. W. H. 

Stevenson, and J. M. Ziman, Proc. Roy Soc. (London) , A253 403 (1959); 
J Cal laway, Phys. Rev., 113, 1046 (1959); P. Ca r ru the r s , Rev Mod. Phys.. 
SS, 92 (1961); H Bross, Phys. Status Sotidi, 2, 481 (1962); P. G Klemens, 
Phys. Rev., 119, 507 (1960); P. G Klemens, G. K. Whi t e , and R. J. Ta insh , 
Phil. Mag , 7, 1323 (1962) 

workers.6 The starting point of this approach is an 
expression for the desired transport coefficient as a 
Fourier transform of the two time correlation function 
of the current operators which appear in the macroscopic 
equations by which the coefficient is defined. I t was 
hoped that the use of such correlation function expres­
sions for the calculation of transport coefficients would 
yield results which the conventional approach via a 
transport equation could not reproduce. 

Recent experimental results7 for the thermal conduc­
tivity of ionic crystals containing point defects can be 
explained rather well if it is assumed that the inverse 
relaxation time for the scattering of phonons by point 
defects, in terms of which the collision term in the 
Peierls transport equation is usually approximated, has 
a resonance character in its dependence on the fre­
quency of the phonon impinging on the defect. The 
subsequent demonstration by Brout and Visscher8 and 
by others9 tha t a heavy mass defect in a crystal can 
give rise to a low frequency "resonance mode" of vibra­
tion of the perturbed crystal has led to a number of at­
tempts to incorporate this phenomenon into calcula­
tions of lattice thermal conductivity. This is usually 
done10 by calculating the cross section for the scattering 

(6) R. Kubo , M. Yokota , and S. Naka j ima , J. Phys. Soc. Japan. 12, 1203 
(1957). In this paper a q u a n t u m mechanical der ivat ion of formal expres­
sions for kinetic coefficients is presented. A classical der ivat ion of these 
expressions had been given several years earlier by M. S. Green, J. Chem. 
Phys., 22, 398 (1954). 

(7) R. O Pohl, Phys. Rev. Letters, 8, 481 (1962); C. T. Walker and R. O 
Pohl , Phys. Rev., 131, 1433 (1963). 

(8) R. Brout and W. Visscher, Phys. Rev. Letters, 9, 54 (1962). 
(9) S. T a k e n o , Progr. Theoret. Phys. (Kyo to ) , 29, 191 (1963); ibid., 29, 

328 (1963); Yu. M. Kagan and Ya. A. Iosilevskii, Zh. Eksperim i Tear 
Fiz., 42, 259 (1962); Soviet Phys. JETP, 1», 182 (1962) 

(10) M. V. Klein, Phys. Rev., 131, 1500 (1963); J. K r u m h a n s l , Pro­
ceedings of the 1963 In te rna t iona l Conference on Lat t ice Dynamics , Perga-
mon Press, London, to be publ ished; J Cal laway, Nuovo Cimento, 29, 
883 (1963); S. Takeno , Progr. Theoret. Phys. (Kyoto) , 30, 144 (1963). 
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of phonons by a point defect not in the Born approxi­
mation but by the use of the T-matrix of generalized 
scattering theory.11 A relaxation time is then cal­
culated from the scattering cross section and used in the 
relaxation time approximation to the Peierls transport 
equation, 

In the present paper we calculate the lattice thermal 
conductivity of a disordered crystal starting from a cor­
relation function expression for the thermal conduc­
tivity. We consider for simplicity an arbitrary cubic 
Bravais crystal a fraction (1 — p) of whose lattice sites 
are occupied by atoms of mass M, while a fraction p 
( < < 1 ) are occupied randomly by atoms of mass M'. 
We neglect here any changes in the interatomic force 
constants of the crystal which result from the introduc­
tion of the small concentration of impurity atoms of 
mass M'. In practice it is more convenient to modify 
the statistical hypothesis underlying our work by stat­
ing that each lattice site of our crystal is occupied by an 
atom of mass M with probability 1 — p, or by an atom of 
mass M' with probability p. In the limit as N, the 
number of atoms in the crystal, becomes large, the two 
ways of looking at the statistical side of our problem 
yield the same result. 

Recently, and independently of the present work, 
WoIl and Langer12 have also calculated the lattice 
thermal conductivity of an isotopically disordered crys­
tal. Their work differs from that reported here in at 
least two respects. They have devised a clever matrix 
propagator method for calculating the Fourier trans­
form of the heat current correlation function, while the 
present calculation proceeds along more conventional 
lines. More importantly, their calculation was carried 
out for a nearest neighbor model of a disordered linear 
chain. Such a crystal model does not sustain a low 
frequency resonance mode when one of its atoms is re­
placed by a heavy impurity atom. Consequently, one 
of the more interesting features of the three-dimensional 
calculation is absent from the one-dimensional result. 
In addition, as we will see in section 3, the heat current 
operator for a three-dimensional crystal has a contribu­
tion, not present for a nearest-neighbor model of a 
linear chain, whose consequences so far have not been 
studied within the framework of conventional transport 
theory but which can be determined by the methods 
used in the present paper. 

It should also be said from the outset that one cannot 
expect to obtain a finite thermal conductivity from the 
present model, and we will find that our final expression 
for the conductivity is a sum over all allowed phonon wave 
vectors inside a unit cell of the reciprocal lattice which 
diverges at long wave lengths. Physically, this diver­
gence is associated with the fact that the long wave 
length lattice waves in an isotopically disordered crystal 
do not feel the microscopic fluctuations in the mass 
density of the crystal: they see a homogeneous medium 
whose density is the mean density of the crystal.13 

In a harmonic crystal these waves propagate without 
being attenuated, and hence give rise to an infinite 
conductivity. In a real crystal anharmonic forces as 
well as the boundaries of the crystal scatter phonons 

l l i H. A. Lippmann and J Schwinfrer Phys RrV. 79, 469 (1!'.-"O! 
12) K. J. WnI], Jr., Bull Am Phys. Snc, [2] 9, 14 fl964',. 
13 ' A, A, Maradud in and G, H, Weiss, J them Phys. 29, 631 .'1958, 

C, Domb, A A Maradud in . E W. Mimtroll , and G, H, Weiss. Phys RrV. 
118, 24 1959: 

more effectively than do point defects, and suppress the 
divergence. If we desire, we can impose a long wave 
length cutoff on the sum over phonon wave vectors with 
the justification that for longer wave lengths another 
mechanism, viz., boundary scattering, will be dominant 
in determining the thermal conductivity. 

We conclude these introductory remarks by express­
ing the crystal Hamiltonian in a form well suited to the 
calculations of the following sections. 

The Hamiltonian for our disordered crystal can be 
written as 

H = E ^ f + ••££ *„„(//><,(/)«,(/') 
la 2M , '2.la I'B 

(1.1) 

In this expression pa(l) and ua(l) are the a-Cartesian 
components of the momentum and displacement of the 
/th atom, respectively; Mi is the mass of the /th atom; 
and the \$a$(}l') I are the atomic force constants for the 
crystal. We rewrite eq. 1.1 in the form 

H = E-r~ + ^EE *«*(//>«(*)"„(/') + 
la '2M 2 la Vg 

E l " 1 - - —" ] PaHl) (1.2) 
^\2M, 2M) Fa W V 

and we will treat the last term of this expression as a 
perturbation on the remainder. We next carry out the 
normal coordinate transformation which diagonalizes 
the unperturbed Hamiltonian 

UM = {2NM) 5 Mk)T^ -1^ (1Ja) 

Pad) 
1 (KM 

i V2.V 
E ea(k/)('oj;(k)) \'i 2Wk.x(/) B 
*j 

k j 

(1.3b) 

Here ojj(k) is the frequency of the normal mode of the 
unperturbed crystal described by the wave vector k 
and branch index j , while e(k?) is the associated unit 
polarization vector. x(/) is the equilibrium position of 
the /th atom, and A^j and B^j are phonon operators 
which are defined in terms of the usual phonon creation 
and destruction operators a^ + and a^- by 

•ikj — «kj + a - k j " 1 ' — 

S^j = o-tj — a~kj+ = 

• i - k r 

- B - ^ 

(1.4a) 

(1.4b) 

In terms of these new operators the crystal Hamiltonian 
becomes 

H = H0 + HD (1.5a) 

H0 = ^E M k ) U k T ^ - + BV^BV\ 
4 k j 

(1.5b) 

Hn = - E E V(k,jil ^j2)BtJ1Bk1J, (1.5c) 
k;j: kij! 

where 
Hk 1J 1 ; k2j,) = -~ . (c,vi(k1)a,v!(k2))

1/Ve(k1j1)e(k.2j2)) X 
4 A 

E [M - i 
\Mi 

2ri'ki + ki i -x; . ( 1.5(1 i 
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We now turn to the problem of calculating the lattice 
thermal conductivity of a disordered crystal described 
by this Hamiltonian. 

2. Transformation of the Kubo Formula for 
Lattice Thermal Conductivity 

The starting point for our calculation of lattice ther­
mal conductivity is the Kubo expression 

K = — Im Hm 
QT 3h 

im I 
—o Jo 

dte-"/<S(*)-S(0)) (2.1) 

in the form which applies to cubic or isotropic crystals. 
Here ft is the volume of the crystal and S(t) is the 
Heisenberg representation operator for the heat current 
operator 

S(O = e " , / * ) f f S ( 0 ) r w ' ' (2.2) 

and H is the crystal Hamiltonian. The angular brack­
ets in eq. 2.1 denote an average in the canonical ensem­
ble described by the Hamiltonian H 

(O) = - ^ i t = \ E ^ " (n\0\n) 
Tr e 

(2.3) 

In eq. 2.3 En is the energy of the (exact) eigenstate 
IJ?) of H. We do not derive or justify the formula 2.1 
here, and refer the interested reader to the extensive 
literature on this problem14 for a derivation. 

If we expand the average in eq. 2.1 in terms of the 
eigenstates of H, we can carry out the time integration 
exactly to obtain 

(2.4) 

For computational purposes it is convenient to re-
express eq. 2.4 as 

" - - 5 T W d - , ^ 1 ' - 0 (2-5) 

where 

PO) 
/^ mn 

-*fi"|<m!S(0)|n)[25 Q (Em - En) - , ) 

(2.6) 

If in this expression we replace v by —v, and then relable 
the dummy summation variables m and n as n and m, 
respectively, we obtain the result tha t 

p(-v) = e^p(v) (2.7) 

Therefore, because we can write the derivative of p(v) 
at v = 0 as 

d„(*) 
= H m 

. o * — O+ 

p(v) — p( — v) 

2v 
(2.8) 

(14) H. Mor i , Phys. Riv., 112, 1829 (1958); ibid., 115, 298 (1959); J. A. 
M c L e n n a n , ibid., 116, 1405 (1959); M. I. Klinger, Zh. Tekh. Fit., 27, 
2780 (1957); Soviet Phys. Tech. Phys., 2, 2578 (1957); D. N . Z u b a r e v , 
DoH. Akad. Nauk SSSR, 140, 92 (1961); Soviet Phys. DoU., 6, 776 
(1961); R. K u b o , "Bou lde r Lectures in Theoret ical Phys ics , " Vol. 1, Aca­
demic Press, New York , N. Y., 1958, p . 120; H. Mor i , I. Oppenhe im, and 
J. Ross in "S tud ies in Stat is t ical Mechan ics , " Vol. I, J. DeBoer and G. E. 
Uhlenbeck, Ed, , Interscience Publ ishers , Inc . , New York, N . Y., 1962, 
pp. 271-298; R. J. H a r d y , P h . D . Thesis , Lehigh Univers i ty , 1962, unpub­
lished; G. V. Chester , Rept. Progr. Phys., 26, 411 (1963). 

we can express K in the form 

1 TT ,. (/hv 

K = — — Hm 
QT3h„^o> 

l)p(-) (2.9) 

The function p(v) can be written in a form better 
suited for its evaluation as 

ph f(v + to) - f{v - to) 
PM = e w — I ^ - = 

- ^ - j / W (2-10) 
e — 1 

where /(z) is the continuation to the complex z plane of 
the Fourier series coefficient 

f(i<»i) 1 p 
/3 Jo 

due - ihwiu F(u) O)) 
2jd 

(2.11) 

of the correlation function 

n « ) = <7V H S(0)e-" H -S(0)> -0$ u ^ /3 (2.12) 

In eq. 2.12 Tn is the u ordering operator which orders a 
product of operators from right to left in order of in­
creasing arguments. Conditions which ensure that 
the function /(2) is in fact the desired continuation to 
arbitrary complex argument of the function fiiiai), 
which is defined only at a discrete set of points, have 
been established by Baym and Mermin.16 Combining 
eq. 2.9 and 2.10 we obtain 

1 TT }{v) 
- hm 

QkT2 3 ,-*o+ v 

(2.13) 

As it stands, this expression gives the thermal conduc­
tivity corresponding to a particular configuration of the 
two kinds of atoms over the lattice sites of the crystal. 
However, we have no knowledge of the atomic configu­
ration in any given case; all we know are the concentra­
tions p and 1 — p of the two constituents. We express 
our ignorance by averaging the result given by eq. 2.13 
over all possible atomic configurations compatible with 
the statistical hypothesis of the preceding section. The 
expression that is the basis for the remainder of this 
paper is 

(*)A = 
1 TT 

QkT2 3 
Hm 
»-*o+ 

/(» (2.14) 

where (. . .)^ denotes the configuration average. 
3. The Heat Current Operator 

Before we can Use eq. 2.14 to calculate the thermal 
conductivity we must have an expression for the heat 
current operator S. In a recent note18 the author has 
derived the following simple expression for this operator 

(3.1) 

where X111(I) is the ^-Cartesian component of the posi­
tion vector of the /th atom in the crystal, and H(I) is the 
part of the crystal Hamiltonian which is associated 
with the Mi lattice site. The expression given byeq . 
3.1 is not exact. An exact expression for S11 has been 
obtained by Hardy,14 '17 but the differences between the 

(15) G. Baym and N. D. Mermin , / . Math. Phys., 2, 232 (1961). 
(16) A. A. M a r a d u d i n , West inghouse Research Laborator ies Scientific 

Paper 63-129-103-P1, 1963, unpubl ished. 
(17) R. J, Ha rdy , Phys. Rev., 1S2, 168 (1963). 
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results obtained on the basis of his expression and those 
obtained through the use of eq. 3.1 appear to be sig­
nificant only at temperatures of the order of or even 
higher than the melting temperature of the crystal. 

The expression for //(/) applicable to the present 
problem is15 

H(I) = E ; — + I E *«*(«')««(/)«*(/') (3-2) 
a 2Ml 2 I'afl 

The time derivative of H(I) is 

H(I) = ~ [H(I), H] 
in 0 E *«,(//') x 

. Mr ' Mi 

Combining eq. 3.1 and 3.3 we obtain 

(3.3) 

S11 = - L L 1 , ( I ) ^ ( I ) - - -•- -
2 ]a I'P Ml' 

(3.4) 

In writing this equation we have introduced the variable 
1=1 — 1', and have used the fact that $ap(ll') depends 
on / and /' only through their difference. 

We now carry out the normal coordinate transforma­
tion given by eq. 1.3 in eq. 3.4 and obtain 

S, = / v E E (^•(k)coHk')),',^(kj1-k'j')^w»kr X 
2iV kjk'y 

NA(k + k') + E (-~ 
v \Mr 

2r i ( k -I- k')-X(i ') 

(3.5) 

where A(k) equals unity when k is a translation vector 
of the reciprocal lattice and vanishes otherwise, and 
where 

vufrj, k ' j ' ) 
1 

2uj(k) 
E e.(*j) L(I) *f X 

sin 2,rk-x(/)|- X Cj)(Vj') (3.0) 

Thus, we obtain a separation of the heat current 
operator into a part which is independent of the disorder 
and a part which depends on the disorder 

S„ Sj"> + Su (3.7) 

where 5M'0> gives the heat current operator for the per­
fect host crystal, while 5M

(<1) is the contribution to the 
heat current from the interaction terms in the crystal 
Hamiltonian 

Sjo) = 9 E M k K y ( k ) ' \ ( k 7 V -kj')AkjB^y 

(3.8) 

sj-d> = ) V E E E M k k v - ( k ' ) ) 
2A kji'j' I 

X 

vu{kj;k'j') ('J'; 2 T11 k + k ' i ' X ' . ' ! 
-lk.,/V,- (3.9) 

Let us look at 5/"-' more closely. 

We can simplify the expression for V11QnJ; — kj') given 
by eq. 3.6 if we introduce the eigenvalue equation for 
the normal mode frequencies of the unperturbed crystal 

E Da0(k)ep(kj) = Uj*(k)ea(kj) (3.10) 
(3 

Da0(k) = ^ E * ^ ) e - 2 " ' k ' x ( i ) (3.11) 

together with the orthogonality condition on the eigen­
vectors 

E ejkj)ea(kj') = ^ , (3.12) 

I t follows from eq. 3.6 and 3.10-3.12 that i>„(k;; - k j ' ) 
can be written in the form 

V11QzJ; -kj') = -&j^u(kj) - V11QiJj') (3.13) 

where V11(IsJ) is the /^-component of the group velocity 
of the phonon (kj) 

(3.14) 

and 

K ( k ) - V ( k ) ] de„(kj) 
"<V(ky ) = - —, rr: E —r.— ejkj') 

A-TTWj(k) aku 

(3.15) 

I t should be pointed out that the analog of V1SkJj') for 
a monatomic linear chain vanishes because the eigen­
vector e(kj) is a constant independent of k. 

Both V11Ck]) and vu(kjj') are odd functions of the 
wave vector k. In view of eq. 3.13 we can write S11'^ 
as the sum of a term which is diagonal in the phonon 
branch indices and a term which is not 

sj°> = s:oo> + s 
(oo) I o (ol) (3.16) 

where 

5w
(oo) = - E ^(k)v,(kj)A^B^ (3.17) 

2 ij 

= E Ha1^k)VJkj)akj
+akj (3.18) 

kj 

5M
(o,) = I E Mk)ay(k))'^(k7y).4kiZV+ (3-19) 

- kjj' 

The existence of the nondiagonal contribution to the 
heat current operator has been demonstrated previously 
by Hardy1 4 1 7 and Choquard.18 

The contribution S11'
00^ is the expression which is 

commonly written down for the phonon heat current 
operator in a harmonic crystal. We see, however, that 
there are at least two other contributions to the heat 
current operator in the harmonic approximation, viz., 
5^<ul) and S11"

1'. In the calculations of the next sec­
tion, however, we retain only the contributions 5M

(oo) 

and S11'"
1' to the heat current operator and neglect the 

contribution associated with 5M
(d). The motivation 

for this approximation lies in the faet that since 5M
(d) 

is, roughly speaking, proportional to the interaction 
term in the crystal Hamiltonian, when we evaluate the 
configuration average of the product of two phonon 

(18) Ph. Choquard, Preliminary Report, Battelle Memorial Institute, 
Geneva, Switzerland, 1962. unpublished 
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Green's functions in the next section the terms involving 
5M

(d> in the spectral densities obtained from these aver­
ages will be of at least one higher order in p than those 
which do not involve 5M

(d). 
For convenience in what follows we express the heat 

current operator as 

The Green's functions 3D±=t(kj; k ' j ' ; u) can be ex­
panded in Fourier series for u in the interval ( — /3, /3) 

where 

S, = E S11IkJf)AvBn.+ (3.20a) 

V - <o,-(kK(k/) + - (co (k)ur(V)%(W) 

(3.20b) 

The results we obtain in this approximation already go 
beyond what is obtainable from the usual treatment of 
lattice thermal conductivity on the basis of the Peierls 
transport equation since the latter makes no provision 
for the nondiagonal contribution to the heat current 
operator, 5 / 0 l ) . 

It is useful to note that v^kjj') obeys the symmetry 
relation 

^ ( k W k u ' ) = o>r(k)v,(kj'j) (3.21) 

as a consequence of which we see that 

^(k)S,(kjj') = ^(k)SM (kj ' j ) (3.22) 

4. The Thermal Conductivity 
In this section we obtain the Fourier coefficient 

/(to,) of the heat current correlation function F{u), 
which is defined by eq. 2.12, and from it the thermal 
conductivity. According to eq. 2.12 and 3.20 the ex­
plicit expression for F(u) is 

FM = E E E sjkjjjs.wd,) x 

(TAkjl(u)B^+(u)A^(0)B^+(0y) (4.1) 

I t will be convenient later on to recall that S^kjj') is an 
odd function of k. 

The calculation of the correlation function (TA^j1-
(U)BkJ1

+(U)AvJ1(O)BvJ1
+(Q)) is greatly simplified by 

the circumstance that for the present problem the 
perturbation Hamiltonian is a quadratic function of the 
phonon creation and destruction operators, i.e., of the 
operators {Bkj}. Since only two phonon vertices occur 
in this problem we are led to the result that the correla­
tion function F(u) can be writtten in the factored form 

F(u) = E E E S1x(M1J2)S^k1JsJ4) x 
f kj'ijik'j'ij'i 

I© ++(kj,; k ' j 3 ; « ) » — ( k / , ; k ' j 4 ; u) + 

©+-(k j , ; k ' j 4 ; « )©-+(k j 2 ; k%- u)} (4.2) 

where we have introduced the phonon Green's functions 

© ++(kj; k'f; u) = (TuAkj(u)Akr(0)) (4.3a) 

SD-(kj; k'j'; u) = (TuBkj
+(u)Bky

+(0)) (4.3b) 

© + - ( k j ; k ' j ' ; u) = (TuAkj(u)Bky
+(0)) (4.3c) 

S>-+(kj;k'j';u) = (TuBkj
+(u)Ak>r(0)) (4.3d) 

The evaluation of SD + +(kj; k'j'; u) has been carried out 
in ref. 19. The evaluation of the remaining Green's 
functions can be carried out in the same way. 

SO = •-{kj; k'f; u) = E © ± ± ( k ; ; k ' i ' ; t U j ) e , ' i hwiu 

(4.4) 

where co, = 2irl/0h. From eq. 4.2 and 4.4, we see that 
we can write /( to,) , the Fourier coefficient of F(u), as 

/(*",) = E E E S(k7,j2)-S(k'j3j4) x 

{ © ++(kj, ; k'j3; too,,) 3D—(kj2; k'j,; to, - to,,) + 

©+-(k j , ; k'jA; to,,)©"+(kj2; k ' j 3 ; to, - iw,,] j (4.5) 

The Fourier coefficients ©± = f c(kj ; k'j'; to,) are readily 
obtained by the methods described in ref. 19 with the 
results that 

© ++(kj; k'f; tec,) = a(kj; to,)A(k + k')djr + 

/3(kj; iut)M(kj; -k'f; to,)0(k'j'; to,) (4.6a) 

3D— (kj; k'f; to,) = -a(kj; to,)A(k + k ' ) V ~ 

a(kj; to,)M( - k j ; k'j'; to,) a(k'f; to,) (4.6b) 

SD+-(kj; k'f; to),) = - 0 ( k j ; t o , ) A ( k - k')djr -

0(kj; iut)M(kj; k'f; m)a(k'f; to,) (4.6c) 

©"+(k j ; k j " ; to,) = /3(kj;to,)A(k - k ' ) V + 
a(kj; to,)M(-kj; - k ' j ' ; to,)/3(k'j'; to,) (4.6d) 

The various functions appearing in these expressions 
are given by 

M(kj; k'f; to,) = -2(3V(-kj;k'j') + 

(2/3) 2E F ( ^ k 1 J 1 M k 1 J , ; to,) F ( - k , j , ; k ' j ' ) -
kii, 

(2/3)3 E E V(-kj; ^ j 1 M k 1 J 1 ; to,) F ( - k , j i ; k2j2) X 
kij'i ky i 

a ( k 2 j 2 ; t o , ) F ( - k 2 j 2 ; k ' j ' ) + . . . = 

M (-k'f; - k j ; to,) 

2<^(k) 1 
"(kj; to,) = 

/3(kj; itai 

Ph o)/(k) + a),2 

2to, 1 

0ft oj/(k) + w,2 

(4.7) 

(4.8a) 

(4.8b) 

All of the random features of the disordered crystal are 
contained in the function M(kj; k'j'; to,). 

When we multiply two propagators together in the 
manner specified by eq. 4.5, and take the configuration 
average of the product, we see that we have two distinct 
averages to evaluate, namely 

and 

(M(kj; k'f; to,)), 

(M(-kh; - k ' j 2 ; to,)M(kj3; k ' j 4 ; iwt))A 

In the approximation in which the repeated scattering 
of a phonon from one and the same impurity is taken 

(19) A. A. Maradud in in "Ast rophys ics and the M a n y - B o d y Prob lem," 
W. A. Benjamin, Inc. , New York, N-. Y., 1963, p. 107. 
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into account exactly, while the scattering of a phonon 
from two or more different impurities is neglected, it 
has been shown19'20 tha t for a cubic Bravais host crystal 
the former average is given by 

(M(kj; k'j'; iu,))A = A(k - k')8jrC(kj; iu,) (4.9a) 

where the function C(kj; iui) is 

/3 W k ) 
C(kj;iut) = -tp ' X 

(qy2(k) + Uf)F-KtU1) 

a>/(k) + a,,2 + ePuj2(k)F^(iu,) 

with 

F(iwt) = 1 euf 1 

3N k? w/(k) + w;2 

M' 
1 -

M 

(4.9b) 

(4.9c) 

(4.9d) 

The latter average can always be written as 

(M(-kju- -k'j2; iui)M(kj3; k'j,; iuh))A = 

(Mi-kju ~k'j2; iuit))A(M(kji; k'j,; iuh))A + 

(Mi-kju ~k'j2; iuh)M(kj3; k'j,; iuh))A, correlated 

(4.10a) 

where the second term on the right side of this equation 
gives those terms which arise from the interference be­
tween the two factors when the configuration average of 
their product is taken. In the approximation repre­
sented by eq. 4.9a, we can substitute the result given by 
eq. 4.9a into the first term on the right side of eq. 4.10a. 
A detailed analysis,20 which we will not reproduce here, 
shows that to the same approximation the correlated 
part of the average 4.10a is given by the product of an 
even function of k alone and an even function of k ' 
alone. When this term is substituted into the configu­
ration average of eq. 4.5, it yields a vanishing contribu­
tion to the thermal conductivity because of the oddness 
of S(kjij2) and S(k'j3j4) in k and k', respectively. As a 
result, for the purposes of the present paper we. may 
write 

(M(~kju ~k'j2; iuh)M(kji; k'j,; iuh))A = 

A(k - k')8hh8jaUC(kju mh) C(kj3;iuh) (4.10b) 

I t is an immediate consequence of the results ex­
pressed by eq. 4.9 and 4.10 that in taking the configu­
ration average of both sides of eq. 4.5 we can replace the 
average of the product of two propagators by the prod­
uct of the averages 

(f(iut)h = E E E S(kij2)S(k'j3J4) x 
kjifa k'jzjt h = — M 

{(2D + + ( k j , ; k ' j 3 ; iuh))A(S)-~(kj2,- k'j,; iut - iuh))A + 

(£>+-(k/i/ k%- iuh))A(S>~+(kj2; k'js; iut - iuh))A } 

(4.11) 
The Fourier coefficients D ± ± ( k j ' ; k'j'; iui) possess 
spectral representations which we write in the form 

(20) A. A. Maradudin, Westinghouse Research Laboratories Scientific 
Paper 64-929-100-P4, January 29, 1964. A result equivalent to that given 
by eq. 4.10b is also obtained by WoIl and Langer, ref, 12. 

^±(kj;k'j';iul) = J ^ Av 

A* ^ k J ; k ' j ' ; , ) 

v — iui 
(4.12) 

The spectral density A ± = t (kj; k'j'; v) can be obtained 
from the Fourier coefficient £> ± : t (k j ; k'j'; iui) if in the 
latter we replace iui by the continuous, complex, vari­
able z. We then see that 

A ± ± ( k j ; k'j.'; v) = — {5>±±(kj; k'j'; v + »0) -

^±(kj;k'j';v-&)\ (4.13) 

When the spectral representations (4.12) are sub­
stituted into eq. 4.11, the sum over Ix can be carried out 
directly, and the functions f(z) and therefore f(v) con­
structed. Combining the result of these steps with eq. 
2.14, we obtain for the thermal conductivity 

(")A = - T^, I ~ E Z S(kj,j2) -S(k'j8j4) X 

/ - ' 

QkT2 3 4 kjtj,k'jv; 
Qhv 

dv csch2 Y {(A++(kj i ; k ' j , ; p)A X . 

(A—(TsJ1; k'j,; ~v))A + <A+-(kj, ; k'j,; v))A X 

(A-+(kj2;k'ji; -V))A] (4.14) 

This result is correct to the lowest order in p. 
Combining eq. 4.6, 4.7, 4.9, and 4.10 we can write the 

configuration averages of the Fourier coefficients ©±=fc 

(kj ; k ' j ' ; iui) as 

(® + +(kj;k'j';iut))A = A(k + k')8jr X 

2«y(k) 1 + ip F"1 (iuj) 
(4.15a) 

(4.15b) 

(4.15c) 

f3h w/(k) + u,2 + tpujHk)F-l(im) 

(S>—(kj;Vj';iui))A = - A ( k + k ' ) V X 

2oy(k) 1 

0h co/(k) + U1
2 + tpuj2(k) F-!(iui) 

(®+-(kj;k'j';iud)A = - A ( k - k')8jr X 

2toj 1 

"Oh oi/(k) + U1
2 + e /> / (k) F-^iui) 

<©-+(kj; k ' j ' ; iut))A = 

- < 3 ) + - ( k i ; k ' j ' ; t « , ) ) x (4.15d) 

From these results and eq. 4.13 we obtain for the con­
figuration average of the spectral densities of these prop­
agators 

<A + + ( k j ; k ' j ' ; v))A = A(k + k')8jr X 

2o>j(k) epv2b(v) 

wdh D(kj;p) 

(A—(kj; k'j'; v))A = - A ( k + k')8jr X 

2uj(k) epuj2(k)b(v) 

ir(3h D(kj; v) 

( A + - ( k j ' ; k ' j ' ; V))A = - A ( k - k')8jr X 

2v tpu/(k)b(v) 

(4.16a) 

(4.16b) 

(4.16c) 
0 D(kj; v 

(A~+(kj; k ' j ' ; v))A = - ( A + " ( k j ; k ' j ' ; v))A (4.16d) 
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The various functions appearing in these expressions 
are defined by 

D(kj; v) = [oj/(k) - v2 + f£co/(k)a(»] 2 + 

e2pV(k)&2(") (4-1 7) 

a(v) = 
1 - *V*G0{> 

[1 - e,2<30(,2)]2 + T2eVG0
2(,2) 

s g n VTTtV2G0(V
2) 

\T~^ev2G0(v
2)]2 + ir2

e
2c4Go"V) 

Go(^2) = r r ; E 5(,2 - o>/(k)) 
3iv k> 

£>("') - E 
3NtJ 

1 

- " / ( k ) ) P 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

The function G0(v
2) is the distribution function for the 

squares of the normal mode frequencies of the perfect 
host crystal, while G0(v

2) is its Hilbert transform. 
In obtaining the results for the spectral densities 

given by eq. 4.1G we have assumed that the impurity 
atoms do not give rise to localized vibration modes. 
This is because the approximation to the configuration 
average of the propagators S ) ± ± ( k j ; k ' j ' ; iwi) that we 
use here yields a <5-function contribution to the corre­
sponding averaged spectral densities associated with the 
localized modes, if any are present. In the case of a 
cubic Bravais crystal where the localized mode is triply 
degenerate,19 the product of the 5-functions which would 
arise from this source in the product of the spectral 
densities in eq. 4.14 is nonintegrable. Physically, this 
is due to the fact that in this approximation heat is 
conducted by the localized modes as if they are nonin-
teracting, and thus with zero resistance. A more 
sophisticated treatment of the impurity problem is re­
quired to overcome this undesirable feature of the 
present calculation. One possibility is to use self-
consistent forms of the phonon propagators.21 In this 
approximation the pole of (SD± ±(k;; k'j'; Z))A in the 
neighborhood of the localized mode frequency, which 
gives rise to the 6-function in the spectral density 
( A ± * ( k ; ; k'j'; V))A, is spread out into a branch cut. 
The spectral density loses its 5-function character and 
the integral over v in eq. 4.14 is no longer singular. In­
clusion of the anharmonicity of the interatomic forces 
in the present theory would also have the same bene­
ficial consequences for the spectral densities. It should 
be emphasized, however, that no difficulties of the kind 
just described arise when the expressions for the spectral 
densities given by eq. 4.16 are used in the case that the 
impurities are heavier than the atoms they replace. 
Since this situation displays a number of features which 
are of current interest in the theory of thermal resis­
tivity due to point defects, the fact that in all that fol­
lows we consider only heavy impurities or impurities 
which are not light enough to give rise to localized 
modes does not render our results overly restrictive. 

When we substitute the spectral densities given by 
eq. 4.16 and the explicit expression for S(k/ija) given by 
eq. 3.20b into eq. 4.14, we obtain 

(«)A 
(Oi 

(21) J. S. Langer and R W. Davi. 
(1963). 

+ * (4.22a) 

Bull. Am. Phys Soc, [2] 8, 15 

where 

„(0) _ £i P 
3 TT kj 

E o/(kK(kj) x 

/ . ' 
dvct(v, T) 

D2(kj; v) 
(4.22b) 

„(» = I2^2 £ BJ.(k) f f l..(k)[^.'(k) +<V(k)]i/«(k7ij,) X 
3 TT kji. 

/ - ' 
•dvcv(v, T) 

b2(v) 

D(Mj1; v)D(kj2; v) 

where we have put 

CV(P, T) = 
* ( 1AA*") ' 
fi sinh2 1Z2JShV 

(4.22c) 

(4.23) 

Let us study each of these contributions in turn. 
As it stands, the result given by eq. 4.22b is suffici­

ently complicated that it is not easy to see even its quali­
tative features. Accordingly, we make some approxi­
mations on the functions which enter into it which lead 
to a result which can be readily understood. Let us 
first define a frequency v0(kj) by the equation 

ufCk) - ^o2 + tpw*Qi)a(i>0)= 0 (4.24) 

If we then assume that b(v) is slowly varying for v in 
the neighborhood of v0(kj), so that we can replace it 
by its value at v0, and in addition is small, we can make 
the "quasi-particle" approximation 

D-2(kj; v) =* N(Xj) [&(v - Wo) + 8(„ + „„)] (4.25a) 

where the coefficient N(kj) is found to be 

1 
N(kj) = 

2 \2v0 - tp^(k)a'(v0)\ 
X 

1 
3/>V(k)*3(0 

(4.25b) 

With this simple approximation for D~2(kj; v) the 
integral over v in eq 4.22b becomes trivial, and we ob­
tain 

K(o) = l e V y o»/(k)i>'(kj)c,(yo, T) 
3 * £? '2v0 - tp^2(k)a'(v0)\ 

(4.26) 
e ' />V(k)&'("o) 

From eq. 4.16 and 4.17 and the kind of argument tha t 
led to eq. 4.25 we see that the spectral densities of the 
phonon propagators ( A ± ± ( k j ; k'j'; v))A have a 
resonance form, centered at v = ±v0. The width of 
this resonance at half-maximum, which we denote by 
2T (kj), gives the decay rate for the probability 
(rather than for the probability amplitude) of finding a 
phonon in the mode (kj) at time t if it is present in this 
mode at time t = 0. We call the reciprocal of this 
width the phonon lifetime, and from eq. 4.Hi obtain the 
result 

r - ' (k j ) = 2V(kj) = 
2epu?(k)b(Vo) 

2vn tpu*(k)a'(v„) 
(4.27) 

Finally, if we make the approximation of replacing v0 

by a),-(k) and neglecting tpu>j2(k)a'(v0) compared with 
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UjQi), because it gives a contribution of higher order in 
p than we consider here, we obtain 

«(0) = \ E c,(w,(k), 2> 2 (kj) r (kj) (4.28a) 
3 kj 

= ^ E c . ( « / k ) , 7>(k/)Z(k/) (4.28b) 
3 kj 

where /(kj) = VQSJ)TQSJ) is the mean free path of the 
phonon (kj). The result given by eq. 4.28 is just the 
result given by the kinetic theory applied to a phonon 
gas. I t must be kept in mind that eq. 4.28 is only an 
approximation to the expression given by eq. 4.22b 
which results when we neglect the shift in the frequency 
of the phonon (kj) given by V0QsJ) — UjQi), and when the 
width 2r(kj) is small. 

To the approximation represented by eq. 4.28, the 
reciprocal of the phonon lifetime is given by 

T-Hk;) = ^ e 2 X 

co/(k)G0(q,/(k)) 

[1 - «ay'(k)G0(<V(k))]» + 7 r 2 e V ( k ) G 0 W ( k ) ) 

(4.29) 

In the long wave length limit, i.e., for small Uj(Is.), G0-
(uJ2Qi)) is proportional to u>_,-(k), so that the inverse 
lifetime is proportional to a>/(k), or to k4. We see 
therefore from eq. (4.28a) that the sum over k diverges 
at long wave lengths like 2£~2 . However, we can argue 
that by the time that the phonon wave lengths become 
so long that the sum begins to diverge, the scattering of 
phonons by the external boundaries of the crystal begins 
to dominate, and a finite result for the conductivity is 
recovered. We may, therefore, impose a long wave 
length cutoff on the sums in eq. 4.28, but we will not 
indicate this explicitly in any of the results which follow. 

Expressions of the type given by the right side of eq. 
4.29 have received a great deal of study recently in con­
nection with the theory of the Mossbauer effect for an 
impurity nucleus19'22 lattice thermal conductivity,10 and 
the thermal properties of crystals.23 From the stand­
point of the present paper, the most interesting feature 
of this expression is the resonance character it possesses 
when c is large and negative, i.e., when the substitu­
tional impurity is a heavy atom. In this case it can be 
shown822 that the equation 

1 = - ! 61W2S0(U)2) (4.30) 

always has a solution u>,2 which tends to zero as |e| 
increases indefinitely. In the neighborhood of this 
frequency the reciprocal lifetime r_ 1(kj) has the form 

T - W ) £* 
TTp urG0{ur

2) 

4B2(ur
2) . , . . „ , 1 , ,, 

(ujQi) - W,)2 + - (7r2) 

(4.31) 

where 

Bi 2) = 
«/(k) 1 

ZN k? W ~ "j2(k))p2 
(4.32) 

(22) W. M. Visscher, Phys. Rev.. 129, 28 (1963); A. A. M a r a d u d i n . West-
inghouse Research Laborator ies Scientific Paper 63-129-103-P9, 1963, un­
published. 

(23) G. W. Lehman and R. E. De Wa me s , Phys. Rev., 131, 1008 (1963); 
Yu. M. Kagan and Ya. A. Iosilevskii, Zh. Eksperim. i. Teor Fiz., 4fl, 819 
(1963). 

yr = -K-
crG0[ur

2 

BW) (4.33) 

The functional form for r _ I (k j ) given by eq. 4.29 is that 
assumed by Pohl7 to explain experimental results for the 
low temperature thermal conductivity of KCl with a 
small number of nitrite ions introduced substitutionary 
into the chloride sublattice. The origin of the reso­
nance form for the inverse lifetime in that case is more 
likely due to the internal degrees of freedom in the 
nitrite ion24 than to any approximation of this ion as a 
pure mass defect. 

Qualitative and quantitative results for the thermal 
conductivity of a disordered crystal have been obtained 
by Callaway10 and Takeno10 on the basis of an inverse 
phonon lifetime of the form given by eq. 4.29, and we 
do not consider this aspect of the problem any further 
here. 

I t may be worth pointing out that it is because the 
function G0(u

2) vanishes identically for juj < UL for a 
nearest neighbor model of a linear chain that this model 
is incapable of yielding a resonance form for r _ 1(kj) . 

We come finally to the contribution «(1) to the 
thermal conductivity. If we make use of eq. 3.15 we 
see that we can rewrite the expression for K(1) in the 
more symmetric form. 

K(D = ^l £ [̂ 2 ( k ) _ ^ ( k ) ] 2 M 2 ( k j j i 2 ) X 

QlT k j i . 

/ - ' 
Ave, (v, T) 

b2(v) 
(4.34) 

DQtJ1; V)DQzJ2; „) 

where the components of the vector u(kjj ') are given by 

«„<k/7) = f E ^ ea(kf) 
47T a Ok1. 

(4.35) 

From the form of eq. 4.34 we see that in the approxi­
mation which yielded eq. 4.28, i.e., replacement of 
£>_1(kji; iv) and D~HkJ2; v) by normalized 5-functions, 
the integral over v is nonvanishing only if Uj1Qi) = 
Uj1Qi), but when this is the case the sum over k, j i , and 
J2 vanishes because of the factor [ ^ ( k ) — Uj1

2Qi)]2. 
To obtain a nonvanishing result for K(1) we would have 
to keep T(kj) finite in our calculations. Put another 
way, the contribution K(1) is of higher order in p than 
K < 0 ) . 

In summary, we have evaluated the Kubo formula 
for thermal conductivity for an isotopically disordered 
cubic Bravais crystal to lowest order in the concentra­
tion of the minority species. When the impurity atoms 
are heariver than the atoms they replace, the result has 
the form given by kinetic theory. However, it is not 
necessary to introduce a phenomenological phonon life­
time in an ad hoc way to obtain this result.25 The life­
time which appears in our result arises in a natural way 
from the analysis. The inverse of the phonon lifetime 
has a resonance character when the impurity atom mass 
is much heavier than the mass of the host atom, in 
qualitative agreement with experimental data on lattice 
thermal conductivity in impure crystals.7 Finally, 

(24) M. Wagner , Phys. Rev., ISS, A750 (1964). 
(25) W. C. Schieve and R L. Peterson, ibid., 126, 1458 (1862). 
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although the expression for the conductivity diverges at 
long wave lengths, arguments can be made for the intro­
duction of a long wave length cutoff on the sums. 

Introduction 
The physical concepts and ideas which have evolved 

in the study of Brownian motion phenomena have 
pervaded many areas of physics, chemistry, astronomy, 
and mathematics.2 '3 In this paper, we continue a line 
of investigation4-7 whose purpose is to gain some in­
sight into the nature of the assumptions made in 
developing a theory of Brownian motion. These 
basic assumptions are best illustrated in the Langevin 
equation2a 

MX + PX - K(X) = A(t) 

which has been used as a starting point for developing 
the theory. The Langevin equation is the equation of 
motion of a Brownian particle of mass M in an external 
force field K(X). It is assumed in writing such an 
equation that the influence of the surrounding medium 
on the Brownian particle can be represented as the 
sum of two terms: @X a dynamical friction or viscous 
resistance proportional to particle velocity, and A (t) 
a rapidly fluctuating random force whose intensity is 
related to the temperature of the medium. Starting 
from the Langevin equation, a complete description 
of the state of the Brownian particle is obtained in the 
form of a conditional probability distribution function 
(c.p.d.f.). The c.p.d.f. IV(X2, X2, I2 I X1, X1, h) is 
the conditional probability that the velocity and 
position are X2 and X2 at time t2 when they were X1 

and X1 at the earlier time Ix. 

In this paper, as in earlier work,4 - 7 we consider a 
modification of a perfect harmonic w-dimensional 
crystal with nearest-neighbor central and noncentral 
forces. The effect of the modification is to introduce 
a Brownian particle into the crystal. These modified 
harmonic oscillator systems have the important feature 

(1) (a) Nat ional Science Founda t ion Senior Postdoctoral Fellow; (b) 
address correspondence to Nat ional Bureau of S t anda rds , Washington 25, 
D. C. 

(2) (a) S. Chandrasekha r , Rev. Mod. Phys., IC, 1 (1943); (b) M. C. Wang 
and G. E. Uhlenbeck, ibid., 17, 323 (1945). 

(3) J. L. Doob, "Stochas t ic Processes," John Wiley and .Sons , Inc. , New 
York, N. Y., 1953, 

(4) R. J. Rubin , "Proceedings of the In te rna t iona l Sympos ium on Trans ­
port Processes in Stat is t ical Mechanics , Brussels, August , 1956," I. Prigo-
gine, Ed., Interscience Publishers , Inc. , New York, N. Y,, 1958, p. 155, 

(5) P, C. Hemmer , Thesis , Del Fysiske Seminar i Trondheim, 2 (1959) 
(6) R. J. Rubin , J. Math. Phys., 1, 309 (1960), 
(I) R. J. Rubin , ibid., 2, 373 (1961). 
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that explicit exact expressions for the c.p.d.f. of the 
Brownian particle can be obtained directly from the 
equations of motion. The only assumption made is 
that the system is initially in thermal equilibrium. 
Once an explicit form of the c.p.d.f. has been obtained, 
the form of the associated Langevin equation (or 
generalized Langevin equation) can be inferred. 
Hemmer5 and Rubin4 '67 modified the crystal by in­
creasing the mass of one of the lattice particles to a 
very large value. In this paper we consider a different 
modification of the crystal in which the particles inside 
a large spherical region are assumed to be rigidly 
connected. This large spherical aggregate, which 
we will call a Brownian sphere, is treated as a single 
particle. 

In the earlier work, it has been shown that for a 
very heavy particle in the one-dimensional crystal5 - 7 

the heavy particle behaves like a free Brownian particle. 
The Langevin equation, which is consistent with the 
c.p.d.f., has the form2a 

MX + Q1X = A (/) 

where the friction constant (J1 is given in terms of lattice 
parameters. For the three-dimensional crystal,7 again 
in the limit of a very heavy particle, the particle 
behaves like a Brownian oscillator. The Langevin 
equation which is consistent with the c.p.d.f. in this 
case has the form23 

MX + foX + kX = A (t) 

where /33 and k are given in terms of lattice parameters. 
For the two-dimensional crystal, the results are less 
complete. I t is shown7 that the position and velocity 
of the heavy particle are non-Markofnan random 
variables8 in contrast to the case of the one- and three-
dimensional crystals where the position and velocity are 
shown to be Markoffian random variables. This is 
the extent of the results which have been obtained 
previously. 

In studying the properties of the Brownian sphere, 
we shall need several results which have been estab-

(8) A pair (or more) of r andom variables is said to be Markoffian if for 
li > h > t\ the condit ional probabi l i ty d is t r ibut ion function IV(Xs, Xi. 
h I Xi, Xi, li; Xi, Xi, ti) is independen t of the values of X and A' a t t ime 
h, i.e., if W(Xi, Xi, h j Xi, Xi, h; Xi. Xu li) =• W(Xs. .Y>, /> i Xi, X1, h); 
otherwise the variables are said to be non-Markofnan, 
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The statistical dynamical behavior of a large spherical particle in an n-dimensional harmonic crystal is studied. 
This Brownian sphere is formed by constraining the particles inside a large spherical region of the crystal to 
move as a single particle. Effective equations of motion for the Brownian sphere are derived. For the one-
dimensional and three-dimensional crystals, these equations are identical with the Langevin equation for a free 
particle and a harmonic oscillator, respectively. For the Brownian sphere in a two-dimensional crystal, a 
generalized Langevin equation is derived which is a non-Markoffian linear integro-differential equation. These 
results for the Brownian sphere are compared with the results obtained by Hemmer and Rubin for a different 
crystal lattice model. 


